Use Cases
Optimizing MySQL Performance with MetricsHub
Optimizing MySQL Performance with MetricsHub: Monitor Queries, Locks, and Cache Efficiency
MetricsHub allows you to collect and analyze key metrics from your MySQL databases, helping you identify performance bottlenecks and optimize query execution. Whether your databases run on Windows or Linux, MetricsHub provides deep visibility into critical performance indicators, enabling proactive troubleshooting and efficiency improvements.
With MetricsHub, you can monitor and address common MySQL issues that impact database performance and application responsiveness. The table below outlines frequent challenges and the corresponding metrics that help diagnose and resolve them:
Issue | Description | Metrics |
---|---|---|
High Query Latency | Queries take too long to execute, causing delays in application response times. | db.server.queries{db.query.state="slow"} , db.server.queries{db.query.state="normal"} , db.server.row_lock.time{db.mysql.engine="innodb"} |
High Cache Miss Rate | Inefficient use of MySQL’s cache leads to frequent disk I/O, slowing down performance. | db.server.cache.operations{db.io.direction="read", db.cache.state="hit"} , db.server.cache.operations{db.io.direction="read", db.cache.state="miss"} |
Lock Contention | High contention on row or table locks can block queries and degrade performance. | db.server.row_lock.current_waits{db.mysql.engine="innodb"} , db.server.row_lock.time{db.mysql.engine="innodb"} , db.server.row_lock.waits{db.mysql.engine="innodb"} |
Disk I/O Bottlenecks | Excessive disk reads and writes slow down database performance, especially for InnoDB. | db.server.io{db.io.direction="read"} , db.server.io{db.io.direction="write"} , db.server.operations{db.io.direction="read", db.mysql.engine="innodb"} |
Inefficient Cache Configuration | Suboptimal cache configuration leads to excessive memory usage or inefficient queries. | db.server.cache.usage{db.cache.state="data_clean"} , db.server.cache.usage{db.cache.state="data_dirty"} , db.server.cache.usage{db.cache.state="free"} |
Failed Connections | Users or applications experience connection failures, resulting in degraded service. | db.server.connections{error.type="client_disconnected", db.connection.state="aborted"} , db.server.connections{error.type="failed_attempt", db.connection.state="aborted"} |
Query Failures | Queries fail due to timeouts or misconfigurations, causing service disruptions. | db.server.queries{db.query.state="failed", error.type="timeout"} , db.server.queries{db.query.state="failed", error.type="set_timeout_failed"} |
Insufficient Threads | The database struggles to handle simultaneous queries, leading to thread starvation. | db.server.threads{db.thread.state="cached"} , db.server.threads{db.thread.state="connected"} , db.server.threads{db.thread.state="created"} |
Resource Utilization Inefficiencies | Inefficient use of CPU, memory, or disk resources slows down the database. | db.server.uptime , db.server.active_connections , db.server.cache.read_head.evicted{db.mysql.engine="innodb"} |
Schema or Data Design Issues | Poor schema design or excessive table operations can degrade database performance. | db.server.row_operations{db.row_operation.type="delete", db.mysql.engine="innodb"} , db.server.row_operations{db.row_operation.type="insert", db.mysql.engine="innodb"} |
In the example below, we configured MetricsHub to collect metrics about the MySQL-Linux
resource hosted on nb-docker
and push the collected metrics to Prometheus.
Procedure
To monitor a MySQL database with MetricsHub:
-
In the
config/metricshub.yaml
file, we configure theMySQL-Linux
resource who is hosted onnb-docker
, a Linux-based system:MySQL-Linux: attributes: host.name: nb-docker host.type: linux
-
We configure the
jdbc
protocol by providing the credentials to connect to the database, the databasetype
and the name of the instance to connect to:protocols: jdbc: timeout: 120s database: information_schema # Name of the instance to connect to. type: mysql # Type of database port: 3306 username: root password: mypassword
Here is the complete YAML configuration to be added to
config/metricshub.yaml
to monitor a MySQL database with MetricsHubMySQL-Linux: attributes: host.name: nb-docker host.type: linux protocols: jdbc: timeout: 120s database: information_schema # Name of the instance to connect to. type: mysql # Type of database port: 3306 username: root password: mypassword
-
Finally we configure the Prometheus integration.
After completing the configuration, we restart MetricsHub and check the logs and Prometheus to confirm that the MySQL metrics are being collected and exported successfully.